United States Patent

US009424092B2

(12) 10) Patent No.: US 9,424,092 B2
Singh et al. 45) Date of Patent: Aug. 23,2016
(54) HETEROGENEOUS THREAD SCHEDULING 8,689,021 Bl 4/2014 Baietal.
2012/0284729 Al 112012 Sharda et al.
. . s s 2012/0317568 Al 12/2012 Aashei
(71) Applicant: Microsoft Technology Licensing, LL.C, 20130132972 Al 57013 Slilrseflﬁl.
Redmond, WA (US) 2013/0191817 Al* 7/2013 Vorbach GOGF 8/4441
717/150
(72) Inventors: Neeraj Kumar Singh, Seattle, WA (US); 2013/0318379 Al 11/2013 Seshadri etal.
Tristan A. Brown, Bellevue, WA (US); 2014/0026146 Al 1/2014 Jahagirdar et al.
Jeremiah S. Samli, Kirkland, WA (US); (Continued)
Jason S. Wohlgemuth, Seattle, WA
(US); Youssef Maged Barakat, Bothell, FOREIGN PATENT DOCUMENTS
WA (US)
WO WO-2009120427 10/2009
(73) Assignee: Microsoft Technology Licensing, LL.C, OTHER PUBLICATIONS
Redmond, WA (US) “International Search Report and Written Opinion”, Application No.
. PCT/US2015/051566, Jan. 4, 2016, 12 pages.
(*) Notice: SUbJeCt. to any disclaimer, ; the term of this Bower, et al., “The Impact of Dynamically Heterogeneous Multicore
patent is extended or adjusted under 35 Processors on Thread Scheduling”, In Proceedings: IEEE Micro, vol.
U.S.C. 154(b) by O days. 28, Issue 3, May 2008, 9 pages.
(Continued)
(21) Appl. No.: 14/498,599
rimary Examiner — Chuck Kenda
) Primary Exami Chuck Kendall
(22) Filed: Sep. 26, 2014 (74) Attorney, Agent, or Firm — John Jardine; Judy Yee;
Micky Minh:
(65) Prior Publication Data icky Minhas
57 ABSTRACT
US 2016/0092274 Al Mar. 31, 2016 Heterogeneous thread scheduling techniques are described in
(51) Int.ClL which a processing Workload.is distributed to heterogeneous
GO6F 9/45 (2006.01) processing cores of a processing system. The heterogeneous
GO6F 9/50 (2006.01) thread scheduling may be implemented based upon a combi-
GO6F 9/48 (2006.01) nation of periodic assessments of system-wide power man-
(52) US.Cl ' agement considerations used to control states of the process-
CPC) GOGF 9/5027 (2013.01); GOGF 9/4893 ing cores and higher frequency thread-by-thread placement
"""""" (2013.01); G061;' 9/5’094 (2013.01) decisions that are made in accordance with thread specific
5%) Tield of Classificati S ’ h ’ policies. In one or more implementations, a system workload
(58) Nle ol Llassilication Searc context is periodically analyzed for a processing system hav-
g one lication file f | i ing heterogeneous cores including power efficient cores and
ee application file for complete search history. performance oriented cores. Based on the periodic analysis,
. cores states are set for some of the heterogeneous cores to
(56) References Cited control activation of the power efficient cores and perfor-
U.S. PATENT DOCUMENTS mance oriented cores for thread scheduling. Then, individual
threads are scheduled in dependence upon the core states to
7,093,147 B2 8/2006 Farkas et al. allocate the individual threads between active cores of the
g’g égﬁ%g g% 5; 58} é glﬁr S;Iall etal. heterogeneous cores on a per-thread basis.
490, elady
8,615,647 B2 12/2013 Hum et al. 20 Claims, 6 Drawing Sheets

300 -
\‘

including power efficient

302
Periodically analyze an operational context for a
processing system having heterogeneous cores

ariented cores

cores and performance

)

performance oriented cores for thread scheduling

304
Set cores staies for at least some of the heterogeneous
coves based on the operationa! context to
control activation of the power efficient cores and

i

core states set based on

306
Schedule individual threads in dependence upon the

allocate the individual threads between active cores of
the heterogeneous cores on a per-thread basis

the periodic analysis to

US 9,424,092 B2

Page 2
(56) References Cited OTHER PUBLICATIONS
U.S. PATENT DOCUMENTS Winter, et al., “Scalable Thread Scheduling and Global Power Man-
agement for Heterogeneous Many-Core Architectures”, In Proceed-
2014/0059558 Al 2/2014 Davis et al. ings of PACT 2010, Available at <http://www.csl.cornell.
2014/0129808 Al 5/2014 Naveh et al. edu/~albonesi/research/papers/pact10_ 2.pdf>,Sep. 2010, 11 pages.

2014/0189377 Al 7/2014 Subbareddy
2014/0189704 A1 7/2014 Narvaez et al. * cited by examiner

U.S. Patent

100
_\

Aug. 23, 2016

Sheet 1 of 6

-

-

_\-

Computing Device 102

Processing
System 104

J

(" Computer-Readable h

Media 106

(Operaﬂng System\
108

J/

Applications
110

-
Power Manager h

9 Module 126

[Thread Scheduier\

J

Module 128 .

\

US 9,424,092 B2

118

‘z

Service Provider 134

(Resources 136 J

U.S. Patent

200
ﬂ‘

Aug. 23, 2016 Sheet 2 of 6

Computing Device 102

.

Processing System 104
(Performance Oriented Cores 29_2_)

(Power Efficient Cores 204)

S

Computer-Readable Media_106

-

Operating System 108
Kernel 206
- ™~
Power Manager Module 126
(Core States 208)
\.

Y,
7 N\
Thread Scheduler Module 128

(Thread Policies m)
_ /

Applications
110

~

US 9,424,092 B2

U.S. Patent Aug. 23,2016 Sheet 3 of 6 US 9,424,092 B2

300
—\‘

02
Periodically analyze an operational context for a
processing system having heterogeneous cores
including power efficient cores and performance
oriented cores

. S

Y

/" N\

304
Set cores states for at ieast some of the heterogeneous
cores based on the operational context to
control activation of the power efficient cores and
performance oriented cores for thread scheduling

v

306
Schedule individual threads in dependence upon the
core states set based on the periodic analysis to
allocate the individual threads between active cores of
the heterogeneous cores on a per-thread basis

. S

U.S. Patent Aug. 23,2016 Sheet 4 of 6 US 9,424,092 B2

400
‘.\

402
Assign thread policies to individual threads that
specify criteria for allocation of threads between
heterogeneous cores of a processing system

\. /

l

s N
404
Ascertain a subset of the heterogeneous cores
selected as active for thread scheduling
according to a periodically applied power
management policy

l

406
Allocate threads on a thread-by-thread basis
among the subset of the heterogeneous cores
and in accordance with the thread policies
assigned to the individual threads

U.S. Patent Aug. 23,2016 Sheet 5 of 6 US 9,424,092 B2

500 —

502
Tracking muitiple performance metrics for a
processing system having heterogeneous cores
including power efficient cores and performance
oriented cores over a time period

l

504
Apply a power management policy to selectively
activate and deactivate the heterogeneous cores
for a subsequent time period based on analysis
of the multiple performance metrics

y

506
Communicate core state data to a thread
scheduler sufficient to enable the thread
scheduler to identify cores of the heterogeneous
cores available for thread scheduling during the
subsequent time period and allocate individual
threads among the identified cores during the

subsequent time periocd
\. J

U.S. Patent Aug. 23,2016 Sheet 6 of 6

600
—\‘

Platform 622

(Resources 624)

~ ~
~ s
~ P

Cloud
620

1

Computing Device 602

Processing
System 604

Computer-readable

Hardware
Elements 610

Media 606

Memory/
Storage 612

/O
Interfaces 608

Power Manager
Module 126

Thread Scheduler
Module 128

|

|

.

S

US 9,424,092 B2

Computer 614

Mobile 616

Television

US 9,424,092 B2

1
HETEROGENEOUS THREAD SCHEDULING

BACKGROUND

Mobile computing devices have been developed to
increase the functionality that is made available to users in a
mobile setting. For example, a user may interact with a
mobile phone, tablet computer, or other mobile computing
device to check email, surf the web, compose texts, interact
with applications, and so on. One challenge that faces devel-
opers of mobile computing devices is efficient power man-
agement and extension of battery life. For example, extended
processing of tasks by processors at or near capacity may
drain the device battery and create thermal conditions that
may force shutdown of the device. Various power manage-
ment strategies may be applied to control processor utiliza-
tion, generally at the expense of overall device performance.
If power management implemented for a device fails to strike
a good balance between performance and battery life, user
dissatisfaction with the device and manufacturer may result.

SUMMARY

Heterogeneous thread scheduling techniques are described
in which a processing workload is distributed to heteroge-
neous processing cores of a processing system. The hetero-
geneous thread scheduling may be implemented based upon
acombination of periodic assessments of system-wide power
management considerations used to control states of the pro-
cessing cores and higher frequency thread-by-thread place-
ment decisions that are made in accordance with thread spe-
cific policies. In one or more implementations, an operational
context is periodically analyzed for a processing system hav-
ing heterogeneous cores including power efficient cores and
performance oriented cores. Based on the periodic analysis,
core states are set for at least some of the heterogeneous cores
to control activation of the power efficient cores and perfor-
mance oriented cores for thread scheduling. Then, individual
threads are scheduled in dependence upon the core states to
allocate the individual threads between active cores of the
heterogeneous cores on a per-thread basis.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example operating environment in
accordance with one or more implementations.

FIG. 2 is diagram depicting example details of a computing
device having heterogeneous processing cores in accordance
with one or more implementations.

FIG. 3 is a flow diagram that describes details of an
example procedure for allocation of threads among heteroge-
neous core in accordance with one or more implementations.

FIG. 4 is a flow diagram that describes details of an
example procedure for thread scheduling based on thread
policies in accordance with one or more implementations.

FIG. 5 is a flow diagram that describes details of an
example procedure for selectively controlling states of het-
erogeneous cores of a processing system in accordance with
one or more implementations.

40

45

50

2

FIG. 6 is a block diagram of a system that can be employed
for heterogeneous thread scheduling in accordance with one
or more implementations.

DETAILED DESCRIPTION

Overview

Generally, devices may implement power management
strategies to control processor utilization and thermal condi-
tions, but power management decisions may adversely affect
device performance. Accordingly, users of a device may
become frustrated if power management is poorly imple-
mented and causes performance to suffer.

Heterogeneous thread scheduling techniques are described
in which a processing workload is distributed to heteroge-
neous processing cores of a processing system. The hetero-
geneous thread scheduling may be implemented based upon
acombination of periodic assessments of system-wide power
management considerations used to control states of the pro-
cessing cores and higher frequency thread-by-thread place-
ment decisions that are made in accordance with thread spe-
cific policies. By way of example and not limitation, an
operating system may include a power manager component
configured to perform the periodic assessments and a thread
scheduler component configured to make higher frequency
thread-by-thread placement decisions under the influence of
the power manager component.

In one or more implementations, an operational context is
periodically analyzed for a processing system having hetero-
geneous cores including power efficient cores and perfor-
mance oriented cores. Based on the periodic analysis, core
states (e.g., active, idle, throttled, etc.) are set for at least some
of the heterogeneous cores to control activation of the power
efficient cores and performance oriented cores for thread
scheduling. Then, individual threads are scheduled in depen-
dence upon the core states to allocate the individual threads
between active cores of the heterogeneous cores on a per-
thread basis.

By combining both system-wide power management con-
siderations and thread specific policies, heterogeneous thread
scheduling techniques described herein may efficiently dis-
tribute a processing workload between a set of heterogeneous
cores. Additionally, power usage may be optimized by intel-
ligently switching between different cores, using power effi-
cient cores more often, and/or placing unused or underuti-
lized cores into idle states whenever possible. Moreover,
performance oriented cores may be activated judiciously to
service the processing workload and priority tasks within
acceptable time constraints. Rather than merely switching
wholesale between clusters of different cores (e.g., switch
completely between performance cores and low power
cores), combinations of cores having different characteristics
may be activated together in various scenarios to optimize
thread placement, device performance, and power usage.

In the discussion that follows, a section titled “Operating
Environment™ is provided and describes one example envi-
ronment in which one or more implementations can be
employed. Following this, a section titled “Heterogeneous
Thread Scheduling Details” describes example details and
procedures in accordance with one or more implementations.
Last, a section titled “Example System” describes example
computing systems, components, and devices that can be
utilized for one or more implementations of heterogeneous
thread scheduling.

Operating Environment

FIG. 1 illustrates an operating environment in accordance
with one or more embodiments, generally at 100. The envi-

US 9,424,092 B2

3

ronment 100 includes a computing device 102 having a pro-
cessing system 104 with one or more processors and devices
(e.g., CPUs, GPUs, microcontrollers, hardware elements,
fixed logic devices, etc.), one or more computer-readable
media 106, an operating system 108, and one or more appli-
cations 110 that reside on the computer-readable media and
which are executable by the processing system. The process-
ing system 104 may be configured to include multiple inde-
pendent processors configured in parallel or in series and one
or more multi-core processing units. A multi-core processing
unit may have two or more processors (“cores”) included on
the same chip or integrated circuit. In one or more implemen-
tations, the processing system 104 may include a set of het-
erogeneous cores that provide a range of performance capa-
bilities, processing efficiencies, and power usage
characteristics, as described in greater detailed below.

The processing system 104 may retrieve and execute com-
puter-program instructions from applications 110 to provide
a wide range of functionality to the computing device 102,
including but not limited to gaming, office productivity,
email, media management, printing, networking, web-brows-
ing, and so forth. A variety of data and program files related to
the applications 110 can also be included, examples of which
include games files, office documents, multimedia files,
emails, data files, web pages, user profile and/or preference
data, and so forth.

The computing device 102 can be embodied as any suitable
computing system and/or device such as, by way of example
and not limitation, a gaming system, a desktop computer, a
portable computer, a tablet or slate computer, a handheld
computer such as a personal digital assistant (PDA), a cell
phone, a set-top box, a wearable device (e.g., watch, band,
glasses, etc.), and the like. For example, as shown in FIG. 1
the computing device 102 can be implemented as a television
client device 112, a computer 114, and/or a gaming system
116 that is connected to a display device 118 to display media
content. Alternatively, the computing device may be any type
of portable computer, mobile phone, or portable device 120
that includes an integrated display 122. A computing device
may also be configured as a wearable device 124 that is
designed to be worn by, attached to, carried by, or otherwise
transported by a user. Examples of wearable devices 124
depicted in FIG. 1 include glasses, a smart band or watch, and
a pod device such as clip-on fitness device, media player, or
tracker. Other examples of wearable devices 124 include but
are not limited to badges, a key fob, an access card, and a ring,
an article of clothing, a glove, or a bracelet, to name a few
examples. Any of the computing devices can be implemented
with various components, such as one or more processors and
memory devices, as well as with any combination of differing
components. One example of a computing system that can
represent various systems and/or devices including the com-
puting device 102 is shown and described below in relation to
FIG. 6.

The computer-readable media can include, by way of
example and not limitation, all forms of volatile and non-
volatile memory and/or storage media that are typically asso-
ciated with a computing device. Such media can include
ROM, RAM, flash memory, hard disk, removable media and
the like. Computer-readable media can include both “com-
puter-readable storage media” and “communication media,”
examples of which can be found in the discussion of the
example computing system of FIG. 6.

The computing device 102 may also include a power man-
ager module 126 and a thread scheduler module 128 that
operate as described above and below. The power manager
module 126 and thread scheduler module 128 may be pro-

40

45

55

4

vided using any suitable combination of hardware, software,
firmware, and/or logic devices. As illustrated, the power man-
ager module 126 and thread scheduler module 128 may be
configured as separate, standalone modules. In addition or
alternatively, the power manager module 126 and thread
scheduler module 128 may be combined and/or implemented
as a components of another module, such as being an inte-
grated components of the operating system 108 or another
application 110.

The power manager module 126 represents functionality
operable to assess system-wide power management consid-
erations and manage availability of processors and cores
based on the assessment. This may involve analyzing factors
including but not limited to the overall workload, thermal
conditions, user presence, processor/core utilization and util-
ity, level of concurrent use of processors/cores or “concur-
rency”, application context, device context, priority, contex-
tual clues, and other performance metrics that may be used to
drive power management decisions at the system level. The
power manager module 126 may be configured to apply a
power management policy to adjust the performance of the
processing system 104 based on the assessment of system-
wide performance metrics and conditions. This may involve
controlling the states and/or availability of heterogeneous
cores included with a processing system 104. For example,
the power manager module 126 may selectively set core states
to “park” unused cores in low power modes (“parked” or
“restricted” state) and “unpark™ cores under high workload
demand into higher power modes (“unparked” or “available”
states). The power manager module 126 may also communi-
cate indications regarding the selection of parked and
unparked cores to other components to convey availability of
the cores to do work until the next assessment.

The thread scheduler module 128 represent functionality
operable to manage allocation of the processing workload
across available processing resources. This may include
queuing, scheduling, prioritizing, and dispatching units of
work referred to as “threads” across available processors
and/or cores. The thread scheduler module 128 is configured
to make relatively high frequency thread-by-thread place-
ment decisions to allocate the workload across cores of the
processing system in accordance with thread specific poli-
cies. The thread-by-thread placement decisions may be made
under the influence of the power manager module 126. For
example, placement of threads by the thread scheduler mod-
ule 128 may be restricted to a subset of the heterogeneous
cores in accordance with system-wide power management
assessments made by the power manager module 126. In
other words, the thread scheduler module 128 may be limited
to cores that the power manager module 126 makes available
for thread scheduling (e.g., unparked cores). Details regard-
ing these and other aspects of heterogeneous thread schedul-
ing are discussed in the following section.

The environment 100 further depicts that the computing
device 102 may be communicatively coupled via a network
130 to a service provider 132, which enables the computing
device 102 to access and interact with various resources 134
made available by the service provider 132. The resources
134 can include any suitable combination of content and/or
services typically made available over a network by one or
more service providers. For instance, content can include
various combinations of text, video, ads, audio, multi-media
streams, applications, animations, images, webpages, and the
like. Some examples of services include, but are not limited
to, an online computing service (e.g., “cloud” computing), an
authentication service, web-based applications, a file storage

US 9,424,092 B2

5

and collaboration service, a search service, messaging ser-
vices such as email and/or instant messaging, and a social
networking service.

Having described an example operating environment, con-
sider now example details and techniques associated with one
or more implementations of heterogeneous thread schedul-
ing.

Heterogeneous Thread Scheduling Details

To further illustrate, consider the discussion in this section
of'example devices, components, procedures, and implemen-
tation details that may be utilized to provide heterogeneous
thread scheduling as described herein. In general, function-
ality, features, and concepts described in relation to the
examples above and below may be employed in the context of
the example procedures described in this section. Further,
functionality, features, and concepts described in relation to
different figures and examples in this document may be inter-
changed among one another and are not limited to implemen-
tation in the context of a particular figure or procedure. More-
over, blocks associated with different representative
procedures and corresponding figures herein may be applied
together and/or combined in different ways. Thus, individual
functionality, features, and concepts described in relation to
different example environments, devices, components, and
procedures herein may be used in any suitable combinations
and are not limited to the particular combinations represented
by the enumerated examples in this description.

Example Device

FIG. 2 depicts generally at 200 example details of a com-
puting device 102 having heterogeneous cores in accordance
with one or more implementations. By way of example and
not limitation, the processing system 104 is depicted as hav-
ing performance oriented cores 202 and power efficient cores
204. The performance oriented cores 202 are representative
of cores designed for high performance and the power effi-
cient cores 204 are representative of cores designed to con-
sume low power. Generally, the performance oriented cores
202 are configured to reduce processing time for completion
of particular tasks/threads relative to the power efficient cores
204. Likewise, the power efficient cores 204 are configured to
consume less power for completion of particular tasks/
threads relative to the performance oriented cores 204.
Although two different types of cores are represented, addi-
tional types of core having different properties may be
included, such as one or more types of cores configured to
provide different levels of balance between performance and
power efficiency. Accordingly, a processing system 104 may
include a set of heterogeneous cores that provide a range of
performance capabilities, processing efficiencies, and power
usage characteristics. Heterogeneous thread scheduling
described herein may be applied to any suitable configuration
of heterogeneous cores for a processing system 104.

By way of example and not limitation, the power manager
module 126 and thread scheduler module 128 are illustrated
in FIG. 2 as being implemented as components of an operat-
ing system 108. For example, the power manager module 126
and thread scheduler module 128 may be implemented as
low-level system components of a kernel 206 of the operating
system 108. Other implementations as components of the
operating system 108 or otherwise are also contemplated. As
noted above, the power manager module 126 is representative
of functionality operable to make system-wide power man-
agement assessments based on various performance metrics,
examples of which are noted above and below. Then, the
power manager module 126 may set core states 208 associ-
ated with the heterogeneous cores to activate or deactivate
cores as appropriate. Core states 208 may include parked or

30

35

40

45

6

restricted states, and unparked or unrestricted states, as men-
tioned previously. Other intermediate states are also contem-
plated, such as “throttled” states in which cores may be set to
operate at some percentage or fraction of full performance.
Thus, the power manager module 126 may implement a
power management policy that relates operational contexts as
indicated by the performance metrics to power management
actions and core states, and direct cores to enter correspond-
ing state in accordance with the power management policy. In
one or more implementation, the power manager module 126
may operate to make assessments on aperiodic interval to
control availability of cores during the next interval (e.g.,
prior to the next assessment). Naturally, on demand and non-
periodic assessments may also be employed. Additional
details regarding power management assessments, core
states, and other functionality represented by the power man-
ager module 126 can be found in relation to the following
example procedures.

As noted above, the thread scheduler module 128 repre-
sents functionality operable to manage allocation of the pro-
cessing workload across available processing resources.
Placement decisions made via the thread scheduler module
128 are generally made thread-by-thread at a frequency
higher than assessments made by the power manager module
126. By way of example and not limitation, threads may be
scheduled in intervals of under about 10 milliseconds,
whereas power management assessments may occur at inter-
vals of about 30 milliseconds or greater.

The thread scheduler module 128 may be configured to
assign and apply thread policies 208 to allocate work among
a subset of heterogeneous cores made available by the power
manager module 126. The thread policies 208 reflect thread
specific strategies for placing work on different types of cores
of heterogeneous cores included with a processing system
104. Thread policies 208 may be assigned based on various
criteria such as application type, priority, activity type, thread
categories, task size, time deadlines, and other parameters
that may be suitable to categorize threads and processes. The
thread policies are configured to account for asymmetric
properties of the heterogeneous cores, such as different per-
formance capabilities, processing efficiencies, and power
usage characteristics associated with different types of cores.

In an implementation, a plurality of different thread poli-
cies 208 may be defined and supported by the system. Thread
policies may be indicated via a policy attribute associated
with threads, such as by setting the value of a parameter to
different numeric values that are indicative of a correspond-
ing thread policies. Thread policies may be selected or
requested by applications. In addition or alternatively, the
thread scheduler module 128 may assess various criteria as
noted above and match individual threads to appropriate poli-
cies. The thread scheduler module 128 may also be config-
ured to override policies that are specified by applications.
Additional details regarding thread scheduling, thread poli-
cies 208, and other functionality represented by the thread
scheduler module 128 can be found in relation to the follow-
ing example procedures.

Example Procedures

Additional aspects of heterogeneous thread scheduling
techniques are discussed in relation to example procedure of
FIGS. 3 to 5. The procedures described in this document may
be implemented utilizing the environment, system, devices,
and components described herein and in connection with any
suitable hardware, software, firmware, or combination
thereof. The procedures may be represented as a set of blocks
that specify operations performed by one or more entities and

US 9,424,092 B2

7

are not necessarily limited to the orders shown for performing
the operations by the respective blocks.

FIG. 3 is a flow diagram that describes details of an
example procedure 300 for allocation of threads among het-
erogeneous core in accordance with one or more implemen-
tations. The procedure 300 can be implemented by way of a
suitably configured computing device, such as by way of an
operating system 108 and/or other functionality described in
relation to the example computing devices of FIG. 1 and FIG.
2. Individual operations and details discussed in relation to
procedure 300 may also be combined in various ways with
operations and details discussed herein in relation to the
example procedures of FIG. 4 and FIG. 5.

An operational context for a processing system having
heterogeneous cores including power efficient cores and per-
formance oriented cores is periodically analyzed (block 302).
For example, an operating system 108 may be configured to
assess performance metrics to recognize an operational con-
text and make system wide power management decisions for
adevice based on the operational context. By way of example
and not limitation, the operational context may reflect a com-
bination of one or more of the overall workload, workload
distribution among processors/cores, thermal conditions,
indications of user presence, power availability (e.g., battery
level, power supply connection, etc.), application type, work
categories, priority settings, and so forth. The assessments
may be made via a power manager module 126 as described
herein, or comparable functionality.

Cores states are set for at least some of the heterogeneous
cores based on the operational context to control activation of
the power efficient cores and performance oriented cores for
thread scheduling (block 304). For instance, a processing
system 104 that is the subject of analysis may include hetero-
geneous cores that may be selectively activated or deactivated
based upon analysis of the operational context and a power
management policy. The power management policy may be
configured to define which cores of a heterogeneous system
are parked and unparked in different operational contexts. For
example, in a low battery state one or more performance
oriented cores may be parked in an idle state to conserve
power and/or one or more power efficient cores may be
unparked into active states to service the workload. In another
example, any type of core that reaches a temperature thresh-
old may be parked to avoid overheating and damage. When
one or more cores are parked, states of other cores may be
adjusted accordingly to provide capacity to handle the current
workload. Various different combinations of different types
of cores of a heterogeneous system may be designated by the
power management policy for handling different operational
contexts. Here, the operating system 108 may be configured
to apply the policy responsive to recognition of the opera-
tional context to direct corresponding changes in the core
states specified by the power management policy. The power
management policy may reflect design decisions to strike a
balance between performance and power usage. Moreover,
the power management policy may be configurable by devel-
opers and/or users to shift the balance more towards perfor-
mance or more towards efficient power usage. Additional
details regarding application of a power management policy
and controlling states of heterogeneous cores are discussed
below in relation to the example procedure of FIG. 5.

Thread scheduling for the heterogeneous cores may be
performed under the influence of the power management
policy and core state selections made based on the operational
context. In particular, individual threads are scheduled in
dependence upon the core states set based on the periodic
analysis to allocate the individual threads between active

10

15

20

25

30

35

40

45

50

55

60

65

8

cores of the heterogeneous cores on a per-thread basis (block
306). For example, an operating system 108 may include a
thread scheduler module 128 or comparable functionality
configured to make high frequency thread placement deci-
sions as discussed previously. The thread placement may be
constrained to a subset of the heterogeneous cores that are
made available for thread scheduling based on periodic evalu-
ation of the system wide power management policy. More-
over, thread policies 210 associated with individual threads
may designate a preferred set of cores to use if available
and/or a permissible set of cores that can be used in the event
preferred cores are not available. The thread policies 210 may
be configured in various ways to specify combinations of
heterogeneous cores, one or more different types of cores,
and/or particular individual cores on which a corresponding
thread is permitted to run. In accordance with thread policies,
priority may be given to the preferred cores, if designated, and
then cores may be selected from a wider set of permissible
cores, if designated. Additional details regarding application
of thread policies and high frequency thread placement deci-
sions are discussed below in relation to the example proce-
dure of FIG. 4.

FIG. 4 is a flow diagram that describes details of an
example procedure 400 for thread scheduling based on thread
policies in accordance with one or more implementations.
The procedure 400 can be implemented by way of a suitably
configured computing device, such as by way of a thread
scheduler module 128 and/or other functionality described in
relation to the example computing devices of FIG. 1 and FIG.
2. Individual operations and details discussed in relation to
procedure 400 may also be combined in various ways with
operations and details discussed herein in relation to the
example procedures of FIG. 3 and FIG. 5.

Thread policies are assigned to individual threads that
specify criteria for allocation of threads between heteroge-
neous cores of a processing system (block 402). For example,
a thread scheduler module 128 may operate to establish,
maintain, and assign thread policies to threads as part of high
frequency (e.g., thread-by-thread) placement decisions
described throughout this document. The thread policies 210
may be configured in various ways to specify combinations of
heterogeneous cores, one or more different types of cores,
and/or particular individual cores on which a corresponding
thread is permitted to run. In one or more implementations,
thread policies are used to generate compact representations
that map permitted cores to threads, such as by using a bit
map, data string, thread properties, mapping database, or
other suitable data structure configured to indicate core affini-
ties that may include indications of preferred cores, permitted
cores, and/or restricted cores on a thread-by-thread basis.

Various criteria may be employed to set-up and assign
thread policies. For example, thread policies may be estab-
lished based upon one or more of application type, priority,
activity type, thread categories, task size, time deadlines, user
visibility indications, and/or other combinations of param-
eters suitable to categorize threads and processes. Thus,
thread policies 210 may be configured to control distribution
of'individual threads and the overall workload among a set of
heterogeneous cores that provide a range of performance
capabilities, processing efficiencies, and power usage char-
acteristics, as described in greater detailed below. In other
words, the heterogeneous cores may include two or more
different types of cores having different performance, effi-
ciency, and/or power usage characteristics.

For example, thread policies may be established to cause
placement of low priority threads to power efficient cores
whereas threads with time deadlines and high priority may be

US 9,424,092 B2

9

placed with performance oriented cores. Different combina-
tions of cores may also be specified for different kinds of
applications and types of work. Thread policies may be estab-
lished to implement various design goals including but not
limited to ability to tune scheduling choices between power
and performance, favoring performance in visible scenarios
to demonstrate device capabilities to users, minimizing
power usage in situations in which users may not notice a
performance difference, partitioning the workload across the
subset of cores made available for scheduling to the extent
possible to speed-up threads that may have potential for sig-
nificant performance impact, and/or providing a balance
between performance and power usage under typical operat-
ing conditions by using and quickly switching between a mix
of different heterogeneous cores having varying characteris-
tics.

In addition, the thread policies may correspond to different
thread categories organized around combinations of criteria,
some examples of which were mentioned above. For
example, application launching threads, message notification
threads, and web page download threads may be placed on
performance oriented cores to give a quick feel. On the other
hand, background tasks, such a downloads of updates,
extended installs, and other long running threads may be
placed on power efficient cores since these task may be less
time sensitive and/or visible to users. Thread policies may be
used to identify cores of the heterogeneous system that may
be used with individual threads.

In another example, interaction classes may be defined that
organize different types of threads into categories based on
expected responsiveness. By way of example, a set of inter-
action classes may include an instant class for brief running
threads (e.g., approximately 50 to 300 milliseconds) that may
not be long enough to impact performance significantly, a
typical class for somewhat longer running (e.g., approxi-
mately 300 to 1000 milliseconds) repetitive scenarios and
scenarios with high visibility that may have more perfor-
mance impact, a responsive class for threads with substantial
workloads (e.g., approximately 1 to 10 seconds) that may
benefit significantly from performance boosts, and an
extended class for long running threads (e.g., approximately
10 to 600 seconds) which may have thermal constraints and
extended timeframes and relatively low potential for perfor-
mance gains, and therefore are good candidates to be depri-
oritized. Scheduling strategies to handle the different inter-
action classes and select between heterogeneous cores may
then be reflected by thread policies associated with the inter-
action classes.

As mentioned above, thread policies may be indicated via
a policy attribute associated with threads, such as by setting
the value of a policy attribute to different numeric values that
are indicative of a corresponding thread policies. Moreover,
the policy attribute be configured to designate core affinities
such as a preferred set of cores to use if available and/or a
permissible set of cores that can be used in the event preferred
cores are not available.

Consider an illustrative example in which different thread
policies may be established and indicated for scheduling on a
heterogeneous system having two types of cores, such as the
example computing device of FIG. 2 having performance
oriented cores 202 and power efficient cores 204. In this
example, six different policies are defined and associated
with threads using a policy attribute as mentioned above that
may take on values between “0” and “5”. The value of 0
indicates that no policy is defined for the thread in which case
the thread may be placed on any available core irrespective of
the type of core. A value of 1 indicates that placement is based

30

40

45

55

10

upon evaluation of criteria. In this case, the thread scheduler
module 128 may operate to evaluate priority, core utiliza-
tions, workload and other considerations to place the thread.
The value of 1 effectively defers the decision making to the
thread scheduler module 128. A value of 2 designates that
performance oriented cores 202 are to be used even if none are
currently available. In other words, the value of 2 indicates
that power efficient cores 204 should not be used. A value of
3 indicates that performance oriented cores 202 are preferred
but idle power efficient cores 204 may also be used based on
core availability. A value of 4 indicates that power efficient
cores 204 are to be used even if none are currently available
(e.g., do not use performance oriented cores 202). A value of
5 indicates power efficient cores 204 are preferred but idle
performance oriented cores 202 may also be used based on
core availability. Naturally, the number and kinds of different
policies may vary in different implementations. Additionally,
comparable policies may be established for other heteroge-
neous systems that may have more than two different types of
cores that are available for scheduling.

A subset of the heterogeneous cores selected as active for
thread scheduling according to a periodically applied power
management policy is ascertained (block 404). For example,
the thread scheduler module 128 may obtain indications
regarding core state data in any suitable way. The core state
data may be configured in various ways to indicate cores that
are available for scheduling during a current time period, such
as by using a bit map, table, binary string, mapping database,
or other representation to indicates states, such as parked or
unparked. The core state data may generated based on assess-
ments of system-wide power management as discussed pre-
viously in this document as well as in relation to the example
procedure of FIG. 5 that follows. For example, the thread
scheduler module 128 may receive core state data via a call
from the power manager module 126 configured to provide
the indication regarding cores states for heterogeneous cores.
The thread scheduler module 128 may then analyze the core
state data to determine the subset of the heterogeneous cores
that are available for scheduling.

Threads are allocated on a thread-by-thread basis among
the subset of the heterogeneous cores and in accordance with
the thread policies assigned to the individual threads (block
406). For example, the thread scheduler module 128 may
perform scheduling using the thread policies associated with
different threads under the constraints imposed by applica-
tion of the power management policy. In particular, the thread
scheduler module 128 is restricted to scheduling using the
subset of the heterogeneous cores ascertained per block 404.
The scheduling may therefore involve reconciling the core
state data that indicates available cores with the thread poli-
cies which indicates core affinities for each thread to derive
usable cores for each scheduling event. The set of usable
cores reflects the intersection between availability indicated
by the core state data and core affinities reflected by the thread
policies. Thus, the thread policy assigned to a particular
thread may be used to determine core affinities for the par-
ticular thread and the thread may be placed with one of the
heterogeneous cores in accordance with the core affinities
that are determined.

Generally, both the system wide constraints reflected by
the core state data and thread-by-thread affinities reflected by
the thread policies are adhered to in the scheduling process. In
one approach, unparked and idle cores may be targeted over
parked or active cores and cores associated with a thread’s
assigned preferences may be selected first. If there are no
preferred cores idle, the thread may be scheduled using idle
permissible cores. Placement of a core in accordance with the

US 9,424,092 B2

11

thread affinities is dependent upon finding a suitable idle core
within the usable cores. In the event that there are no preferred
cores or permissible cores available for placement, then
scheduling may be switched to priority-based scheduling to
allocate threads across unparked cores. The priority-based
scheduling may target the set of permissible cores and/or may
involve applying an override algorithm to schedule threads on
the already busy processors.

FIG. 5 is a flow diagram that describes details of an
example procedure 500 for selectively controlling states of
heterogeneous cores of a processing system in accordance
with one or more implementations. The procedure 500 can be
implemented by way of a suitably configured computing
device, such as by way of a power manager module 126
and/or other functionality described in relation to the example
computing devices of FIG. 1 and FIG. 2. Individual opera-
tions and details discussed in relation to procedure 500 may
also be combined in various ways with operations and details
discussed herein in relation to the example procedures of FIG.
3 and FIG. 4.

Multiple performance metrics for a processing system hav-
ing heterogeneous cores including power efficient cores and
performance oriented cores are tracked over a time period
(block 502). Then, a power management policy is applied to
selectively activate and deactivate the heterogeneous cores
for a subsequent time period based on analysis of the multiple
performance metrics (block 504). For example, a power man-
ager module 126 may operate to track various performance
metrics that are indicative of an operational context for a
processing system as part of periodic power management
assessments described throughout this document. Various
types and combinations of metrics are contemplated,
examples of which were previously discussed. The power
manager module 126 may then utilize the metrics that are
tracked to make relatively low frequency power management
assessments and control activation states for heterogeneous
cores accordingly. This may involve causing changes in cores
states for power efficient cores and performance oriented
cores in accordance with a power management policy.

Core state data is communicated to a thread scheduler
sufficient to enable the thread scheduler to identify cores of
the heterogeneous cores available for thread scheduling dur-
ing the subsequent time period and allocate individual threads
among the identified cores during the subsequent time period
(block 506). For example, power manager module 126 may
generate core state data indicative of parked and unparked
cores that may be configured in various forms. By way of
example, core states 208 for a system of heterogeneous cores
may be conveyed to the thread scheduler module 128 and/or
other components via a bit map, table, binary string, mapping
database, a list of core 1Ds, a matrix, or other representation.
The thread scheduler module 128 may then utilize the core
state data to derive a subset of cores available for scheduling
as discussed in relation to the procedure of FIG. 4 above, and
elsewhere in this document

In one or more implementations, the metrics used for sys-
tem level power management may include at least a utility
factor and a concurrency factor for the heterogeneous cores
tracked over the time period. The utility factor is an indication
of how much work is being performed over the time period
and may be proportional to utilization of the heterogeneous
cores (e.g., how occupied the cores are during the time period)
and to the performance level of the heterogeneous cores (e.g.
the frequencies at which the cores are running) The concur-
rency factor is an indication of the amount of time multiple
cores of the heterogeneous cores are running together. In this
case, decisions regarding which cores to activate and/or deac-

20

25

30

40

45

55

12

tivate a subsequent time period may depend upon a combi-
nation of at least core utility and core concurrency factors.
The core utility and core concurrency factors may be used to
compute the numbers and types of cores of the heterogeneous
system to park and unpark for the subsequent time period. A
variety of power management policies and corresponding
core activation algorithms configured to incorporate core util-
ity and core concurrency factors in various ways are contem-
plated.

Example Core Activation Algorithm

To further illustrate, consider the following example core
activation algorithm that may be employed in one or more
implementations to selectively park and unpark cores. The
example core activation algorithm is provided as but one
illustrative example and the techniques described herein are
not intended to be limited to the example algorithm.

In accordance with the preceding discussion, the example
core activation algorithm uses a combination of total utility
and concurrency of the prior period to select core states for the
next period. The total utility is distributed over the putative
utilization of the active cores, assuming the utilization is
packed onto the smallest possible number of cores given a
histogram representation of the concurrent activity of the
cores. This utility is then checked against a set of thresholds to
determine cores to park or unpark for the next period. For
example, thresholds may be established to control whether to
increase or decrease the total number of cores and/or each
individual type of core. The increase and decrease thresholds
can be chosen independently for different types of cores. With
respect to each particular core type, thresholds may also be
chosen independently for the first core versus subsequent
cores to allow for policies that account for a higher cost to
unpark the first performance oriented core (since the second
core may share common power resources with the first core)
than to unpark subsequent performance oriented cores. Simi-
larly, a unique threshold could be applied for unparking a
third or later high-performance core.

In this context, the count of unparked cores may be com-
puted in the following manner:

Core Count Calculation
N is the total number of cores on the system.

C, is the amount of time spent with i cores running simulta-
neously, called concurrent time.

U is the total utility achieved on the machine.

T is the total elapsed time:

7, 1s the utilization the k’th processor, assuming all the work
is packed on the smallest set of processors that could meet the
distribution of concurrent time.

9!

i

N
Z = Z
i=k

~|

US 9,424,092 B2

13

7.7 1s the total utilization of the system (where 1 represents a
single fully occupied processor):

U, is estimated utility of the i’th core assuming close packing
and distribution of utility proportional to utilization:

UrZ;
u, = U
Zr

U, is compared to an upper “increase” threshold (which can
be set individually per value of i, e.g., per core) to determine
if a core should be unparked. If U, it is below this threshold, it
is compared to a different, lower “decrease” threshold to
determine if a core should be parked. Thus, the utility for one
or more individual cores may be computed based on a total
utility factor and a concurrency factor for the heterogeneous
cores. Utility for the one or more individual cores is then
compared to thresholds set for the cores to determine whether
to activate or deactivate the cores. For instance, if the utility
exceeds an upper threshold the core may be unparked (e.g.,
activated). If the utility is below a lower threshold the core
may be parked (e.g., deactivated).

In the case of a system having a combination of perfor-
mance oriented cores and power efficient cores, the foregoing
utility computation may be used to determine the number and
cores states for the performance oriented cores. In some
implementations, comparable utility computations and
thresholds may be used to determine the number and cores
states for other types of cores, including the power efficient
cores.

To avoid anomalies in which a core’s utility can be offset by
other types of cores running at a lower frequency the actual
measured utility of the i’th most utilized core may be used if
it is higher than the estimated utility. Additionally, for quick
response to demands for performance, the core activation
algorithm may configured to increase the available count of
performance oriented cores (or other type of cores) after a
single cycle of observed demand. However, decreasing the
number cores may require multiple cycles of observed lighter
demand. For example, the core activation algorithm may be
set to observe three consecutive cycles of low demand before
parking cores. The number of cycles to both increase and
decrease core counts may be controlled according to config-
urable parameters.

Having considered the foregoing example details and tech-
niques, consider now a discussion of an example system and
components that may be employed in one or more implemen-
tations of or heterogeneous thread scheduling.

Example System

FIG. 6 illustrates an example system 600 that includes an
example computing device 602 that is representative of one or
more computing systems and/or devices that may implement
the various techniques described herein. The computing
device 602 may be, for example, a server of a service provider,
a device associated with a client (e.g., a client device), an
on-chip system, and/or any other suitable computing device
or computing system.

The example computing device 602 as illustrated includes
a processing system 604, one or more computer-readable
media 606, and one or more I/O interfaces 608 that are com-

10

15

20

25

30

35

40

45

50

55

60

65

14

municatively coupled, one to another. Although not shown,
the computing device 602 may further include a system bus or
other data and command transfer system that couples the
various components, one to another. A system bus can include
any one or combination of different bus structures, such as a
memory bus or memory controller, a peripheral bus, a univer-
sal serial bus, and/or a processor or local bus that utilizes any
of a variety of bus architectures. A variety of other examples
are also contemplated, such as control and data lines.

The processing system 604 is representative of functional-
ity to perform one or more operations using hardware.
Accordingly, the processing system 604 is illustrated as
including hardware elements 610 that may be configured as
processors, functional blocks, and so forth. This may include
implementation in hardware as an application specific inte-
grated circuit or other logic device formed using one or more
semiconductors. The hardware elements 610 are not limited
by the materials from which they are formed or the processing
mechanisms employed therein. For example, processors may
be comprised of semiconductor(s) and/or transistors (e.g.,
electronic integrated circuits (ICs)). In such a context, pro-
cessor-executable instructions may be electronically-execut-
able instructions.

The computer-readable media 606 is illustrated as includ-
ing memory/storage 612. The memory/storage 612 repre-
sents memory/storage capacity associated with one or more
computer-readable media. The memory/storage 612 may
include volatile media (such as random access memory
(RAM)) and/or nonvolatile media (such as read only memory
(ROM), Flash memory, optical disks, magnetic disks, and so
forth). The memory/storage 612 may include fixed media
(e.g., RAM, ROM, a fixed hard drive, and so on) as well as
removable media (e.g., Flash memory, a removable hard
drive, an optical disc, and so forth). The computer-readable
media 606 may be configured in a variety of other ways as
further described below.

Input/output interface(s) 608 are representative of func-
tionality to allow a user to enter commands and information to
computing device 602, and also allow information to be pre-
sented to the user and/or other components or devices using
various input/output devices. Examples of input devices
include a keyboard, a cursor control device (e.g., a mouse), a
microphone for voice operations, a scanner, touch function-
ality (e.g., capacitive or other sensors that are configured to
detect physical touch), a camera (e.g., which may employ
visible or non-visible wavelengths such as infrared frequen-
cies to detect movement that does not involve touch as ges-
tures), and so forth. Examples of output devices include a
display device (e.g., a monitor or projector), speakers, a
printer, a network card, tactile-response device, and so forth.
Thus, the computing device 602 may be configured in a
variety of ways as further described below to support user
interaction.

Various techniques may be described herein in the general
context of software, hardware elements, or program modules.
Generally, such modules include routines, programs, objects,
elements, components, data structures, and so forth that per-
form particular tasks or implement particular abstract data
types. The terms “module,” “functionality,” and “component™
as used herein generally represent software, firmware, hard-
ware, or acombination thereof. The features ofthe techniques
described herein are platform-independent, meaning that the
techniques may be implemented on a variety of commercial
computing platforms having a variety of processors.

An implementation of the described modules and tech-
niques may be stored on or transmitted across some form of
computer-readable media. The computer-readable media

US 9,424,092 B2

15

may include a variety of media that may be accessed by the
computing device 602. By way of example, and not limita-
tion, computer-readable media may include “computer-read-
able storage media” and “communication media.”

“Computer-readable storage media” refers to media and/or
devices that enable storage of information in contrast to mere
signal transmission, carrier waves, or signals per se. Thus,
computer-readable storage media does not include signal
bearing media, transitory signals, or signals per se. The com-
puter-readable storage media includes hardware such as vola-
tile and non-volatile, removable and non-removable media
and/or storage devices implemented in a method or technol-
ogy suitable for storage of information such as computer
readable instructions, data structures, program modules,
logic elements/circuits, or other data. Examples of computer-
readable storage media may include, but are not limited to,
RAM, ROM, EEPROM, flash memory or other memory tech-
nology, CD-ROM, digital versatile disks (DVD) or other opti-
cal storage, hard disks, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
other storage device, tangible media, or article of manufac-
ture suitable to store the desired information and which may
be accessed by a computer.

“Communication media” may refer to signal-bearing
media that is configured to transmit instructions to the hard-
ware of the computing device 602, such as via a network.
Communication media typically may embody computer
readable instructions, data structures, program modules, or
other data in a modulated data signal, such as carrier waves,
data signals, or other transport mechanism. Communication
media also include any information delivery media. The term
“modulated data signal” means a signal that has one or more
of its characteristics set or changed in such a manner as to
encode information in the signal. By way of example, and not
limitation, communication media include wired media such
as a wired network or direct-wired connection, and wireless
media such as acoustic, RF, infrared, and other wireless
media.

As previously described, hardware elements 610 and com-
puter-readable media 606 are representative of instructions,
modules, programmable device logic and/or fixed device
logic implemented in a hardware form that may be employed
in some embodiments to implement at least some aspects of
the techniques described herein. Hardware elements may
include components of an integrated circuit or on-chip sys-
tem, an application-specific integrated circuit (ASIC), a field-
programmable gate array (FPGA), a complex programmable
logic device (CPLD), and other implementations in silicon or
other hardware devices. In this context, a hardware element
may operate as a processing device that performs program
tasks defined by instructions, modules, and/or logic embod-
ied by the hardware element as well as a hardware device
utilized to store instructions for execution, e.g., the computer-
readable storage media described previously.

Combinations of the foregoing may also be employed to
implement various techniques and modules described herein.
Accordingly, software, hardware, or program modules
including the operating system 108, applications 110, power
manager module 126, thread scheduler module 128, and other
program modules may be implemented as one or more
instructions and/or logic embodied on some form of com-
puter-readable storage media and/or by one or more hardware
elements 610. The computing device 602 may be configured
to implement particular instructions and/or functions corre-
sponding to the software and/or hardware modules. Accord-
ingly, implementation of modules as a module that is execut-
able by the computing device 602 as software may be

10

15

20

25

30

35

40

45

50

55

60

65

16

achieved at least partially in hardware, e.g., through use of
computer-readable storage media and/or hardware elements
610 of the processing system. The instructions and/or func-
tions may be executable/operable by one or more articles of
manufacture (for example, one or more computing devices
602 and/or processing systems 604) to implement techniques,
modules, and examples described herein.

As further illustrated in FIG. 6, the example system 600
enables ubiquitous environments for a seamless user experi-
ence when running applications on a personal computer (PC),
a television device, and/or a mobile device. Services and
applications run substantially similar in all three environ-
ments for acommon user experience when transitioning from
one device to the next while utilizing an application, playing
a video game, watching a video, and so on.

In the example system 600, multiple devices are intercon-
nected through a central computing device. The central com-
puting device may be local to the multiple devices or may be
located remotely from the multiple devices. In one embodi-
ment, the central computing device may be a cloud of one or
more server computers that are connected to the multiple
devices through a network, the Internet, or other data com-
munication link.

In one embodiment, this interconnection architecture
enables functionality to be delivered across multiple devices
to provide a common and seamless experience to a user of the
multiple devices. Each of the multiple devices may have
different physical requirements and capabilities, and the cen-
tral computing device uses a platform to enable the delivery of
an experience to the device that is both tailored to the device
and yet common to all devices. In one embodiment, a class of
target devices is created and experiences are tailored to the
generic class of devices. A class of devices may be defined by
physical features, types of usage, or other common charac-
teristics of the devices.

In various implementations, the computing device 602
may assume a variety of different configurations, such as for
computer 614, mobile 616, and television 618 uses. Each of
these configurations includes devices that may have generally
different constructs and capabilities, and thus the computing
device 602 may be configured according to one or more ofthe
different device classes. For instance, the computing device
602 may be implemented as the computer 614 class of a
device that includes a personal computer, desktop computer,
a multi-screen computer, laptop computer, netbook, and so
on.

The computing device 602 may also be implemented as the
mobile 616 class of device that includes mobile devices, such
as a mobile phone, portable music player, portable gaming
device, a tablet computer, a multi-screen computer, and so on.
The computing device 602 may also be implemented as the
television 618 class of device that includes devices having or
connected to generally larger screens in casual viewing envi-
ronments. These devices include televisions, set-top boxes,
gaming consoles, and so on.

The techniques described herein may be supported by
these various configurations of the computing device 602 and
are not limited to the specific examples of the techniques
described herein. This is illustrated through inclusion of the
power manager module 126 and thread scheduler module 128
on the computing device 602. The functionality represented
by power manager module 126, thread scheduler module 128,
and other modules/applications may also be implemented all
or in part through use of a distributed system, such as over a
“cloud” 620 via a platform 622 as described below.

The cloud 620 includes and/or is representative of a plat-
form 622 for resources 624. The platform 622 abstracts

US 9,424,092 B2

17

underlying functionality of hardware (e.g., servers) and soft-
ware resources of the cloud 620. The resources 624 may
include applications and/or data that can be utilized while
computer processing is executed on servers that are remote
from the computing device 602. Resources 624 can also
include services provided over the Internet and/or through a
subscriber network, such as a cellular or Wi-Fi network.

The platform 622 may abstract resources and functions to
connect the computing device 602 with other computing
devices. The platform 622 may also serve to abstract scaling
of resources to provide a corresponding level of scale to
encountered demand for the resources 624 that are imple-
mented via the platform 622. Accordingly, in an intercon-
nected device embodiment, implementation of functionality
described herein may be distributed throughout the system
600. For example, the functionality may be implemented in
part on the computing device 602 as well as via the platform
622 that abstracts the functionality of the cloud 620.

Example Implementations

Examples implementations of heterogeneous thread
scheduling techniques described herein include, but are not
limited to, one or any combinations of one of more of the
following examples:

A method implemented by a computing device compris-
ing: assigning thread policies to individual threads, the thread
policies specifying criteria for allocation of threads between
heterogeneous cores of a processing system; ascertaining a
subset of the heterogeneous cores selected as active for thread
scheduling according to a periodically applied power man-
agement policy; and allocating threads on a thread-by-thread
basis among the subset of the heterogeneous cores and in
accordance with the thread policies assigned to the individual
threads.

A method as described above, wherein the heterogeneous
cores include at least performance oriented cores and power
efficient cores, the performance oriented cores configured to
reduce processing time for completion of particular tasks
relative to the power efficient cores and the power efficient
cores configured to consume less power for completion of
particular tasks relative to the performance oriented cores.

A method as described above, wherein the criteria for
allocation of threads include one or more of application type,
priority, activity type, thread categories, task size, or time
deadlines.

A method as described above, wherein ascertaining the
subset of the heterogeneous cores includes obtaining core
state data that is generated based on application of the power
management policy and configured to indicate cores that are
available for scheduling during a current time period.

A method as described above, wherein allocating threads
comprises: generating a preferred set of cores and a permis-
sible set of cores for a particular thread based upon the thread
policy assigned to the particular thread; placing the thread on
a core of the preferred set of cores if at least one of the
preferred set of cores is in the subset and available for sched-
uling; or placing the thread on a core of the permissible set of
cores if at least one of the preferred set of cores is not available
and at least one of the permissible set of cores is in the subset
and available for scheduling.

A method as described above, wherein assigning thread
policies further comprises setting the value of a policy
attribute for individual threads to different numeric values to
indicate at least one of preferred cores, permitted cores, or
restricted cores on a thread-by-thread basis.

A method as described above, wherein the thread policies
are configured to account for asymmetric properties of the
heterogeneous cores.

20

35

40

45

18

A method as described above, wherein the heterogeneous
cores of the processing system include more than two differ-
ent types of cores.

A method implemented by a computing device compris-
ing: tracking multiple performance metrics for a processing
system having heterogeneous cores including power efficient
cores and performance oriented cores over a time period;
applying a power management policy to selectively activate
and deactivate the heterogeneous cores for a subsequent time
period based on analysis of the multiple performance and
system state metrics; and communicating core state data to a
thread scheduler sufficient to enable the thread scheduler to
identify cores of the heterogeneous cores available for thread
scheduling during the subsequent time period and allocate
individual threads among the identified cores during the sub-
sequent time period.

A method as described above, wherein applying the power
management policy comprises: causing changes in cores
states for the power efficient cores and the performance ori-
ented cores; and generating the core state data configured to
convey the cores states to other components.

A method as described above, wherein the performance
metrics include at least a utility factor and a concurrency
factor for the heterogeneous cores measured over the time
period.

A method as described above, further comprising recog-
nizing an operational context for the computing device based
on the analysis of the performance metrics, the operational
context indicative of a combination of one or more of overall
workload, workload distribution among cores, thermal con-
ditions, indications of user presence, power availability,
application type, work categories, or priority settings.

A method as described above, wherein the power manage-
ment policy is configured to define which cores of the hetero-
geneous cores are parked and unparked in different opera-
tional contexts indicated by the tracking of multiple
performance metrics.

A method as described above, wherein applying the power
management policy to selectively activate and deactivate the
heterogeneous cores comprises: computing utility for one or
more individual cores based on a utility factor and a concur-
rency factor for the heterogeneous cores; comparing the util-
ity computed for the one or more individual cores to thresh-
olds set for the cores to determine whether to activate or
deactivate the cores.

A method as described above, wherein the heterogeneous
cores of the processing system provide a range of different
performance capabilities, processing efficiencies, and power
usage characteristics.

A computing device comprising: a processing system hav-
ing heterogeneous cores including at least power efficient
cores and performance oriented cores; and an operating sys-
tem including one or more modules operable via the process-
ing system to perform operations for managing performance
of'a processing workload via the heterogeneous cores includ-
ing: periodically analyzing an operational context for the
processing system; setting core states for at least some of the
heterogeneous cores based on the periodic analysis to control
activation of the power efficient cores and performance ori-
ented cores for thread scheduling; and scheduling individual
threads in dependence upon the core states set based on the
periodic analysis to allocate the individual threads between
active cores of the heterogeneous cores on a per-thread basis.

A computing device as described above, wherein the
scheduling occurs at a frequency greater than the periodic
analysis.

US 9,424,092 B2

19

A computing device as described above, wherein the one or
more modules include: a power manager module configured
to perform the periodically analyzing and setting of cores
states; and a thread scheduler module configured to perform
the scheduling in dependence upon the core states.

A computing device as described above, wherein periodi-
cally analyzing the operational context includes tracking
workload, thermal conditions, indications of user presence,
and power availability.

A computing device as described above, wherein schedul-
ing of the individual threads includes, for each particular
thread: using a thread policy assigned to the particular thread
to determine core affinities for the particular thread; and plac-
ing the particular thread with one of the heterogeneous cores
in accordance with the core affinities that are determined.

CONCLUSION

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.
What is claimed is:
1. A method implemented by a computing device compris-
ing:
assigning thread policies to individual threads, the thread
policies specifying criteria for allocation of threads
between heterogeneous cores of a processing system;

ascertaining a subset of the heterogeneous cores selected as
active for thread scheduling according to a periodically
applied power management policy; and

allocating threads on a thread-by-thread basis among the

subset of the heterogeneous cores and in accordance
with the thread policies assigned to the individual
threads.

2. The method of claim 1, wherein the heterogeneous cores
include at least performance oriented cores and power effi-
cient cores, the performance oriented cores configured to
reduce processing time for completion of particular tasks
relative to the power efficient cores and the power efficient
cores configured to consume less power for completion of
particular tasks relative to the performance oriented cores.

3. The method of claim 1, wherein the criteria for allocation
of threads include one or more of application type, priority,
activity type, thread categories, task size, or time deadlines.

4. The method of claim 1, wherein ascertaining the subset
of'the heterogeneous cores includes obtaining core state data
that is generated based on application of the power manage-
ment policy and configured to indicate cores that are available
for scheduling during a current time period.

5. The method of claim 1, wherein allocating threads com-
prises:

generating a preferred set of cores and a permissible set of

cores for aparticular thread based upon the thread policy
assigned to the particular thread;

placing the thread on a core of the preferred set of cores if

at least one of the preferred set of cores is in the subset
and available for scheduling; or

placing the thread on a core of the permissible set of cores

if at least one of the preferred set of cores is not available
and at least one of the permissible set of cores is in the
subset and available for scheduling.

6. The method of claim 1, wherein assigning thread poli-
cies further comprises setting the value of a policy attribute

10

15

20

25

30

35

40

45

50

55

60

65

20

for individual threads to different numeric values to indicate
at least one of preferred cores, permitted cores, or restricted
cores on a thread-by-thread basis.

7. The method of claim 1, wherein the thread policies are
configured to account for asymmetric properties of the het-
erogeneous cores.

8. The method of claim 1, wherein the heterogeneous cores
of the processing system include more than two different
types of cores.

9. A method implemented by a computing device compris-
ing:

tracking multiple performance metrics for a processing

system having heterogeneous cores including power
efficient cores and performance oriented cores over a
time period;
applying a power management policy to selectively acti-
vate and deactivate the heterogeneous cores for a subse-
quent time period based on analysis of the multiple
performance and system state metrics; and

communicating core state data to a thread scheduler suffi-
cient to enable the thread scheduler to identify cores of
the heterogeneous cores available for thread scheduling
during the subsequent time period and allocate indi-
vidual threads among the identified cores during the
subsequent time period.

10. The method of claim 9, wherein applying the power
management policy comprises:

causing changes in cores states for the power efficient cores

and the performance oriented cores; and

generating the core state data configured to convey the

cores states to other components.

11. The method of claim 9, wherein the performance met-
rics include at least a utility factor and a concurrency factor
for the heterogeneous cores measured over the time period.

12. The method of claim 9, further comprising recognizing
an operational context for the computing device based on the
analysis of the performance metrics, the operational context
indicative of a combination of one or more of overall work-
load, workload distribution among cores, thermal conditions,
indications of user presence, power availability, application
type, work categories, or priority settings.

13. The method of claim 9, wherein the power management
policy is configured to define which cores of the heteroge-
neous cores are parked and unparked in different operational
contexts indicated by the tracking of multiple performance
metrics.

14. The method of claim 9, wherein applying the power
management policy to selectively activate and deactivate the
heterogeneous cores comprises:

computing utility for one or more individual cores based on

a utility factor and a concurrency factor for the hetero-
geneous cores;

comparing the utility computed for the one or more indi-

vidual cores to thresholds set for the cores to determine
whether to activate or deactivate the cores.

15. The method of claim 9, wherein the heterogeneous
cores of the processing system provide a range of different
performance capabilities, processing efficiencies, and power
usage characteristics.

16. A computing device comprising:

aprocessing system having heterogeneous cores including

at least power efficient cores and performance oriented
cores; and

an operating system including one or more modules oper-

able via the processing system to perform operations for
managing performance of a processing workload via the
heterogeneous cores including:

US 9,424,092 B2

21

periodically analyzing an operational context for the
processing system;

setting core states for at least some of the heterogeneous
cores based on the periodic analysis to control activa-
tion of the power efficient cores and performance
oriented cores for thread scheduling; and

scheduling individual threads in dependence upon the
core states set based on the periodic analysis to allo-
cate the individual threads between active cores of the
heterogeneous cores on a per-thread basis.

17. A computing device as recited in claim 16, wherein the
scheduling occurs at a frequency greater than the periodic
analysis.

18. A computing device as recited in claim 16, wherein the
one or more modules include:

a power manager module configured to perform the peri-

odically analyzing and setting of cores states; and

a thread scheduler module configured to perform the

scheduling in dependence upon the core states.
19. A computing device as recited in claim 16, wherein
periodically analyzing the operational context includes track-
ing workload, thermal conditions, indications of user pres-
ence, and power availability.
20. A computing device as recited in claim 16, wherein
scheduling of the individual threads includes, for each par-
ticular thread:
using a thread policy assigned to the particular thread to
determine core affinities for the particular thread; and

placing the particular thread with one of the heterogeneous
cores in accordance with the core affinities that are deter-
mined.

10

15

20

25

30

22

